Pytorch的nn.Dropout运行稳定性测试

猿友 2021-07-23 14:39:07 浏览数 (2390)
反馈

pytorch中的dropout方法可以用来删除一些不必要的特征值,但是每次Dropout的时候Dropout掉的参数可能都不一样,那么pytorch 中nn.Dropout如何优化呢?接下来这篇文章告诉你。

结论

Pytorch的nn.Dropout在每次被调用时dropout掉的参数都不一样,即使是同一次forward也不同。

如果模型里多次使用的dropout的dropout rate大小相同,用同一个dropout层即可。

如代码所示:

import torch
import torch.nn as nn
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.dropout_1 = nn.Dropout(0.5)
        self.dropout_2 = nn.Dropout(0.5)
    def forward(self, input):
        # print(input)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_2 = self.dropout_2(input)
        print(drop_2)
if __name__ == '__main__':
    i = torch.rand((5, 5))
    m = MyModel()
    m.forward(i)

结果如下:

*\python.exe */model.pytensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])Process finished with exit code 0

以上就是pytorch 中nn.Dropout如何优化的全部内容,希望能给大家一个参考,也希望大家多多支持W3Cschool


0 人点赞