Flask怎么实现异步执行任务?

独留清风醉 2021-08-17 11:18:21 浏览数 (3979)
反馈

Flask 是 Python 中有名的轻量级同步 web 框架,在一些开发中,可能会遇到需要长时间处理的任务,此时就需要使用异步的方式来实现,让长时间任务在后台运行,先将本次请求的响应状态返回给前端,不让前端界面「卡顿」,当异步任务处理好后,如果需要返回状态,再将状态返回。那么Flask怎么实现异步执行任务呢?接下来的这篇文章带你了解。

怎么实现呢?

使用线程的方式

当要执行耗时任务时,直接开启一个新的线程来执行任务,这种方式最为简单快速。

通过 ThreadPoolExecutor 来实现

from flask import Flask
from time import sleep
from concurrent.futures import ThreadPoolExecutor
# DOCS https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
# 创建线程池执行器
executor = ThreadPoolExecutor(2)
app = Flask(__name__)
@app.route('/jobs')
def run_jobs():
 # 交由线程去执行耗时任务
 executor.submit(long_task, 'hello', 123)
 return 'long task running.'
# 耗时任务
def long_task(arg1, arg2):
 print("args: %s %s!" % (arg1, arg2))
 sleep(5)
 print("Task is done!")
if __name__ == '__main__':
 app.run()

当要执行一些比较简单的耗时任务时就可以使用这种方式,如发邮件、发短信验证码等。

但这种方式有个问题,就是前端无法得知任务执行状态。

如果想要前端知道,就需要设计一些逻辑,比如将任务执行状态存储到 redis 中,通过唯一的任务 id 进行标识,然后再写一个接口,通过任务 id 去获取任务的状态,然后让前端定时去请求该接口,从而获得任务状态信息。

全部自己实现就显得有些麻烦了,而 Celery 刚好实现了这样的逻辑,来使用一下。

使用 Celery

为了满足前端可以获得任务状态的需求,可以使用 Celery。

Celery 是实时任务处理与调度的分布式任务队列,它常用于 web 异步任务、定时任务等,后面单独写一篇文章描述 Celery 的架构,这里不深入讨论。

现在我想让前端可以通过一个进度条来判断后端任务的执行情况。使用 Celery 就很容易实现,首先通过 pip 安装 Celery 与 redis,之所以要安装 redis,是因为让 Celery 选择 redis 作为「消息代理 / 消息中间件」。

pip install celery
pip install redis

在 Flask 中使用 Celery 其实很简单,这里先简单的过一下 Flask 中使用 Celery 的整体流程,然后再去实现具体的项目

1.在 Flask 中初始化 Celery

from flask import Flask
from celery import Celery
app = Flask(__name__)
# 配置
# 配置消息代理的路径,如果是在远程服务器上,则配置远程服务器中redis的URL
app.config['CELERY_BROKER_URL'] = 'redis://localhost:6379/0'
# 要存储 Celery 任务的状态或运行结果时就必须要配置
app.config['CELERY_RESULT_BACKEND'] = 'redis://localhost:6379/0'
# 初始化Celery
celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])
# 将Flask中的配置直接传递给Celery
celery.conf.update(app.config)
 

上述代码中,通过 Celery 类初始化 celery 对象,传入的应用名称与消息代理的连接 URL。

2.通过 celery.task 装饰器装饰耗时任务对应的函数

@celery.task
def long_task(arg1, arg2):
 # 耗时任务的逻辑
 return result

3.Flask 中定义接口通过异步的方式执行耗时任务

@app.route('/', methods=['GET', 'POST'])
def index():
 task = long_task.delay(1, 2)
delay () 方法是 applyasync () 方法的快捷方式,applyasync () 参数更多,可以更加细致的控制耗时任务,比如想要 long_task () 在一分钟后再执行
@app.route('/', methods=['GET', 'POST'])
def index():
 task = long_task.apply_async(args=[1, 2], countdown=60)

delay () 与 apply_async () 会返回一个任务对象,该对象可以获取任务的状态与各种相关信息。
通过这 3 步就可以使用 Celery 了。

接着就具体来实现「让前端可以通过一个进度条来判断后端任务的执行情况」的需求。

# bind为True,会传入self给被装饰的方法
@celery.task(bind=True)
def long_task(self):
 verb = ['Starting up', 'Booting', 'Repairing', 'Loading', 'Checking']
 adjective = ['master', 'radiant', 'silent', 'harmonic', 'fast']
 noun = ['solar array', 'particle reshaper', 'cosmic ray', 'orbiter', 'bit']
 message = ''
 total = random.randint(10, 50)
 for i in range(total):
 if not message or random.random() < 0.25:
 # 随机的获取一些信息
 message = '{0} {1} {2}...'.format(random.choice(verb),
 random.choice(adjective),
 random.choice(noun))
 # 更新Celery任务状态
 self.update_state(state='PROGRESS',
 meta={'current': i, 'total': total,
 'status': message})
 time.sleep(1)
 # 返回字典
 return {'current': 100, 'total': 100, 'status': 'Task completed!',
 'result': 42}

上述代码中,celery.task () 装饰器使用了 bind=True 参数,这个参数会让 Celery 将 Celery 本身传入,可以用于记录与更新任务状态。

然后就是一个 for 迭代,迭代的逻辑没什么意义,就是随机从 list 中抽取一些词汇来模拟一些逻辑的运行,为了表示这是耗时逻辑,通过 time.sleep (1) 休眠一秒。

每次获取一次词汇,就通过 self.update_state () 更新 Celery 任务的状态,Celery 包含一些内置状态,如 SUCCESS、STARTED 等等,这里使用了自定义状态「PROGRESS」,除了状态外,还将本次循环的一些信息通过 meta 参数 (元数据) 以字典的形式存储起来。有了这些数据,前端就可以显示进度条了。

定义好耗时方法后,再定义一个 Flask 接口方法来调用该耗时方法

@app.route('/longtask', methods=['POST'])
def longtask():
 # 异步调用
 task = long_task.apply_async()
 # 返回 202,与Location头
 return jsonify({}), 202, {'Location': url_for('taskstatus',
 task_id=task.id)}

简单而言,前端通过 POST 请求到 /longtask,让后端开始去执行耗时任务。

返回的状态码为 202,202 通常表示一个请求正在进行中,然后还在返回数据包的包头 (Header) 中添加了 Location 头信息,前端可以通过读取数据包中 Header 中的 Location 的信息来获取任务 id 对应的完整 url。

前端有了任务 id 对应的 url 后,还需要提供一个接口给前端,让前端可以通过任务 id 去获取当前时刻任务的具体状态。

@app.route('/status/<task_id>')
def taskstatus(task_id):
 task = long_task.AsyncResult(task_id)
 if task.state == 'PENDING': # 在等待
 response = {
 'state': task.state,
 'current': 0,
 'total': 1,
 'status': 'Pending...'
 }
 elif task.state != 'FAILURE': # 没有失败
 response = {
 'state': task.state, # 状态
 # meta中的数据,通过task.info.get()可以获得
 'current': task.info.get('current', 0), # 当前循环进度
 'total': task.info.get('total', 1), # 总循环进度
 'status': task.info.get('status', '')
 }
 if 'result' in task.info:
 response['result'] = task.info['result']
 else:
 # 后端执行任务出现了一些问题
 response = {
 'state': task.state,
 'current': 1,
 'total': 1,
 'status': str(task.info), # 报错的具体异常
 }
 return jsonify(response)

为了可以获得任务对象中的信息,使用任务 id 初始化 AsyncResult 类,获得任务对象,然后就可以从任务对象中获得当前任务的信息。

该方法会返回一个 JSON,其中包含了任务状态以及 meta 中指定的信息,前端可以利用这些信息构建一个进度条。

如果任务在 PENDING 状态,表示该任务还没有开始,在这种状态下,任务中是没有什么信息的,这里人为的返回一些数据。如果任务执行失败,就返回 task.info 中包含的异常信息,此外就是正常执行了,正常执行可以通 task.info 获得任务中具体的信息。

这样,后端的逻辑就处理完成了,接着就来实现前端的逻辑,要实现图形进度条,可以直接使用 nanobar.js,简单两句话就可以实现一个进度条,其官网例子如下:

var options = {
 classname: 'my-class',
 id: 'my-id',
 // 进度条要出现的位置
 target: document.getElementById('myDivId')
};
// 初始化进度条对象
var nanobar = new Nanobar( options );
nanobar.go( 30 ); // 30% 进度条
nanobar.go( 76 ); // 76% 进度条
// 100% 进度条,进度条结束
nanobar.go(100);

有了 nanobar.js 就非常简单了。

先定义一个简单的 HTML 界面

<h2>Long running task with progress updates</h2>
<button id="start-bg-job">Start Long Calculation</button><br><br>
<div id="progress"></div>

通过 JavaScript 实现对后台的请求

// 按钮点击事件
$(function() {
 $('#start-bg-job').click(start_long_task);
 });
// 请求 longtask 接口
function start_long_task() {
 // 添加元素在html中
 div = $('<div class="progress"><div></div><div>0%</div><div>...</div><div> </div></div><hr>');
 $('#progress').append(div);
 // 创建进度条对象
 var nanobar = new Nanobar({
 bg: '#44f',
 target: div[0].childNodes[0]
 });
 // ajax请求longtask
 $.ajax({
 type: 'POST',
 url: '/longtask',
 // 获得数据,从响应头中获取Location
 success: function(data, status, request) {
 status_url = request.getResponseHeader('Location');
 // 调用 update_progress() 方法更新进度条
 update_progress(status_url, nanobar, div[0]);
 },
 error: function() {
 alert('Unexpected error');
 }
 });
 }
// 更新进度条
function update_progress(status_url, nanobar, status_div) {
 // getJSON()方法是JQuery内置方法,这里向Location中对应的url发起请求,即请求「/status/<task_id>」
 $.getJSON(status_url, function(data) {
 // 计算进度
 percent = parseInt(data['current'] * 100 / data['total']);
 // 更新进度条
 nanobar.go(percent);
 // 更新文字
 $(status_div.childNodes[1]).text(percent + '%');
 $(status_div.childNodes[2]).text(data['status']);
 if (data['state'] != 'PENDING' && data['state'] != 'PROGRESS') {
 if ('result' in data) {
 // 展示结果
 $(status_div.childNodes[3]).text('Result: ' + data['result']);
 }
 else {
 // 意料之外的事情发生
 $(status_div.childNodes[3]).text('Result: ' + data['state']);
 }
 }
 else {
 // 2秒后再次运行
 setTimeout(function() {
 update_progress(status_url, nanobar, status_div);
 }, 2000);
 }
 }); 
 } 

可以通过注释阅读代码整体逻辑。

至此,需求实现完了,运行一下。

首先运行 Redis

redis-server

然后运行 celery

celery worker -A app.celery --loglevel=info

最后运行 Flask 项目

python app.py

效果如下:

运行结果

到此这篇Flask怎么实现异步执行任务的文章就介绍到这了,更多Flask 学习内容请搜索W3Cschool以前的文章或继续浏览下面的相关文章。

0 人点赞