HBase MapReduce摘要到HBase示例
2018-04-09 13:47 更新
HBase MapReduce摘要到HBase示例
以下的示例使用 HBase 作为 MapReduce 源,并使用一个总结步骤。此示例将计算表中某个值的不同实例的数量,并将这些汇总计数写入另一个表中。
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleSummary");
job.setJarByClass(MySummaryJob.class); // class that contains mapper and reducer
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
TableMapReduceUtil.initTableMapperJob(
sourceTable, // input table
scan, // Scan instance to control CF and attribute selection
MyMapper.class, // mapper class
Text.class, // mapper output key
IntWritable.class, // mapper output value
job);
TableMapReduceUtil.initTableReducerJob(
targetTable, // output table
MyTableReducer.class, // reducer class
job);
job.setNumReduceTasks(1); // at least one, adjust as required
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
}
在此示例映射器中,选择一个带有字符串值的列作为要汇总的值。该值用作从映射器发出的密钥,IntWritable 代表实例计数器。
public static class MyMapper extends TableMapper<Text, IntWritable> {
public static final byte[] CF = "cf".getBytes();
public static final byte[] ATTR1 = "attr1".getBytes();
private final IntWritable ONE = new IntWritable(1);
private Text text = new Text();
public void map(ImmutableBytesWritable row, Result value, Context context) throws IOException, InterruptedException {
String val = new String(value.getValue(CF, ATTR1));
text.set(val); // we can only emit Writables...
context.write(text, ONE);
}
}
在 reducer 中,“ones” 被计数(就像任何其他的 MR 例子一样),然后发出一个 Put。
public static class MyTableReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {
public static final byte[] CF = "cf".getBytes();
public static final byte[] COUNT = "count".getBytes();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int i = 0;
for (IntWritable val : values) {
i += val.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.add(CF, COUNT, Bytes.toBytes(i));
context.write(null, put);
}
}
以上内容是否对您有帮助:
更多建议: