C++基数排序
上一节我们介绍了计数排序,它适用于数据量
「基数排序 radix sort」的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。
算法流程
以学号数据为例,假设数字的最低位是第
- 初始化位数
。 - 对学号的第
位执行“计数排序”。完成后,数据会根据第 - 将
增加2.
继续迭代,直到所有位都排序完成后结束。
图 11-18 基数排序算法流程
下面来剖析代码实现。对于一个
其中
此外,我们需要小幅改动计数排序代码,使之可以根据数字的第
radix_sort.cpp
/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
int digit(int num, int exp) {
// 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
return (num / exp) % 10;
}
/* 计数排序(根据 nums 第 k 位排序) */
void countingSortDigit(vector<int> &nums, int exp) {
// 十进制的位范围为 0~9 ,因此需要长度为 10 的桶
vector<int> counter(10, 0);
int n = nums.size();
// 统计 0~9 各数字的出现次数
for (int i = 0; i < n; i++) {
int d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 d
counter[d]++; // 统计数字 d 的出现次数
}
// 求前缀和,将“出现个数”转换为“数组索引”
for (int i = 1; i < 10; i++) {
counter[i] += counter[i - 1];
}
// 倒序遍历,根据桶内统计结果,将各元素填入 res
vector<int> res(n, 0);
for (int i = n - 1; i >= 0; i--) {
int d = digit(nums[i], exp);
int j = counter[d] - 1; // 获取 d 在数组中的索引 j
res[j] = nums[i]; // 将当前元素填入索引 j
counter[d]--; // 将 d 的数量减 1
}
// 使用结果覆盖原数组 nums
for (int i = 0; i < n; i++)
nums[i] = res[i];
}
/* 基数排序 */
void radixSort(vector<int> &nums) {
// 获取数组的最大元素,用于判断最大位数
int m = *max_element(nums.begin(), nums.end());
// 按照从低位到高位的顺序遍历
for (int exp = 1; exp <= m; exp *= 10)
// 对数组元素的第 k 位执行计数排序
// k = 1 -> exp = 1
// k = 2 -> exp = 10
// 即 exp = 10^(k-1)
countingSortDigit(nums, exp);
}
为什么从最低位开始排序?
在连续的排序轮次中,后一轮排序会覆盖前一轮排序的结果。举例来说,如果第一轮排序结果
算法特性
相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数
- 时间复杂度
:设数据量为 进制、最大位数为 时间,排序所有 时间。通常情况下, 都相对较小,时间复杂度趋向 - 空间复杂度
、非原地排序:与计数排序相同,基数排序需要借助长度为 的数组res
和counter
。 - 稳定排序:与计数排序相同。
更多建议: