Verilog FFT设计

2022-05-18 11:19 更新

FFT(Fast Fourier Transform),快速傅立叶变换,是一种 DFT(离散傅里叶变换)的高效算法。在以时频变换分析为基础的数字处理方法中,有着不可替代的作用。

FFT 原理

公式推导

DFT 的运算公式为:


其中

将离散傅里叶变换公式拆分成奇偶项,则前 N/2 个点可以表示为:


同理,后 N/2 个点可以表示为:


由此可知,后 N/2 个点的值完全可以通过计算前 N/2 个点时的中间过程值确定。对 A[k] 与 B[k] 继续进行奇偶分解,直至变成 2 点的 DFT,这样就可以避免很多的重复计算,实现了快速离散傅里叶变换(FFT)的过程。

算法结构

8 点 FFT 计算的结构示意图如下。

由图可知,只需要简单的计算几次乘法和加法,便可完成离散傅里叶变换过程,而不是对每个数据进行繁琐的相乘和累加。


重要特性

  1. 级的概念
  2. 每分割一次,称为一级运算。

    设 FFT 运算点数为 N,共有 M 级运算,则它们满足:


    每一级运算的标识为 m = 0, 1, 2, ..., M-1。

    为了便于分割计算,FFT 点数 N 的取值经常为 2 的整数次幂。

  3. 蝶形单元
  4. FFT 计算结构由若干个蝶形运算单元组成,每个运算单元示意图如下:


    蝶形单元的输入输出满足:


    其中


    每一个蝶形单元运算时,进行了一次乘法和两次加法。

    每一级中,均有 N/2 个蝶形单元。

    故完成一次 FFT 所需要的乘法次数和加法次数分别为:


  5. 组的概念
  6. 每一级 N/2 个蝶形单元可分为若干组,每一组有着相同的结构与 因子分布。

    例如 m=0 时,可以分为 N/2=4 组。

    m=1 时,可以分为 N/4=2 组。

    m=M-1 时,此时只能分为 1 组。

  7. 因子分布  因子存在于 m 级,其中 
  8. 在 8 点 FFT 第二级运算中,即 m=1 ,蝶形运算因子可以化简为:

  9. 码位倒置
  10. 对于 N=8 点的 FFT 计算,X(0) ~ X(7) 位置对应的 2 进制码为:

    X(000), X(001), X(010), X(011), X(100), X(101), X(110), X(111)
    

    将其位置的 2 进制码进行翻转:

    X(000), X(100), X(010), X(110), X(001), X(101), X(011), X(111)
    

    此时位置对应的 10 进制为:

    X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)
    

    恰好对应 FFT 第一级输入数据的顺序。

    该特性有利于 FFT 的编程实现。

FFT 设计

设计说明

为了利用仿真简单的说明 ​FFT ​的变换过程,数据点数取较小的值 8。

如果数据是串行输入,需要先进行缓存,所以设计时数据输入方式为并行。

数据输入分为实部和虚部共 2 部分,所以计算结果也分为实部和虚部。

设计采用流水结构,暂不考虑资源消耗的问题。

为了使设计结构更加简单,这里做一步妥协,乘法计算直接使用乘号。如果 ​FFT ​设计应用于实际,一定要将乘法结构换成可以流水的乘法器,或使用官方提供的效率较高的乘法器 IP。

蝶形单元设计

蝶形单元为定点运算,需要对旋转因子进行定点量化。

借助 matlab 将旋转因子扩大 8192 倍(左移 13 位),可参考附录。

为了防止蝶形运算中的乘法和加法导致位宽逐级增大,每一级运算完成后,要对输出数据进行固定位宽的截位,也可去掉旋转因子倍数增大而带来的影响。 代码如下:

`timescale 1ns/100ps
/**************** butter unit *************************
Xm(p) ------------------------> Xm+1(p)
           -        ->
             -    -
                -
              -   -
            -        ->
Xm(q) ------------------------> Xm+1(q)
      Wn          -1
*//////////////////////////////////////////////////////
module butterfly
    (
     input                       clk,
     input                       rstn,
     input                       en,
     input signed [23:0]         xp_real, // Xm(p)
     input signed [23:0]         xp_imag,
     input signed [23:0]         xq_real, // Xm(q)
     input signed [23:0]         xq_imag,
     input signed [15:0]         factor_real, // Wnr
     input signed [15:0]         factor_imag,

     output                      valid,
     output signed [23:0]        yp_real, //Xm+1(p)
     output signed [23:0]        yp_imag,
     output signed [23:0]        yq_real, //Xm+1(q)
     output signed [23:0]        yq_imag);

    reg [4:0]                    en_r ;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            en_r   <= 'b0 ;
        end
        else begin
            en_r   <= {en_r[3:0], en} ;
        end
    end

    //=====================================================//
    //(1.0) Xm(q) mutiply and Xm(p) delay
    reg signed [39:0] xq_wnr_real0;
    reg signed [39:0] xq_wnr_real1;
    reg signed [39:0] xq_wnr_imag0;
    reg signed [39:0] xq_wnr_imag1;
    reg signed [39:0] xp_real_d;
    reg signed [39:0] xp_imag_d;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d    <= 'b0;
            xp_imag_d    <= 'b0;
            xq_wnr_real0 <= 'b0;
            xq_wnr_real1 <= 'b0;
            xq_wnr_imag0 <= 'b0;
            xq_wnr_imag1 <= 'b0;
        end
        else if (en) begin
            xq_wnr_real0 <= xq_real * factor_real;
            xq_wnr_real1 <= xq_imag * factor_imag;
            xq_wnr_imag0 <= xq_real * factor_imag;
            xq_wnr_imag1 <= xq_imag * factor_real;
            //expanding 8192 times as Wnr
            xp_real_d    <= {{4{xp_real[23]}}, xp_real[22:0], 13'b0};
            xp_imag_d    <= {{4{xp_imag[23]}}, xp_imag[22:0], 13'b0};
        end
    end

    //(1.1) get Xm(q) mutiplied-results and Xm(p) delay again
    reg signed [39:0] xp_real_d1;
    reg signed [39:0] xp_imag_d1;
    reg signed [39:0] xq_wnr_real;
    reg signed [39:0] xq_wnr_imag;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            xp_real_d1     <= 'b0;
            xp_imag_d1     <= 'b0;
            xq_wnr_real    <= 'b0 ;
            xq_wnr_imag    <= 'b0 ;
        end
        else if (en_r[0]) begin
            xp_real_d1     <= xp_real_d;
            xp_imag_d1     <= xp_imag_d;
            //提前设置好位宽余量,防止数据溢出
            xq_wnr_real    <= xq_wnr_real0 - xq_wnr_real1 ;
            xq_wnr_imag    <= xq_wnr_imag0 + xq_wnr_imag1 ;
      end
    end

   //======================================================//
   //(2.0) butter results
    reg signed [39:0] yp_real_r;
    reg signed [39:0] yp_imag_r;
    reg signed [39:0] yq_real_r;
    reg signed [39:0] yq_imag_r;
    always @(posedge clk or negedge rstn) begin
        if (!rstn) begin
            yp_real_r      <= 'b0;
            yp_imag_r      <= 'b0;
            yq_real_r      <= 'b0;
            yq_imag_r      <= 'b0;
        end
        else if (en_r[1]) begin
            yp_real_r      <= xp_real_d1 + xq_wnr_real;
            yp_imag_r      <= xp_imag_d1 + xq_wnr_imag;
            yq_real_r      <= xp_real_d1 - xq_wnr_real;
            yq_imag_r      <= xp_imag_d1 - xq_wnr_imag;
        end
    end

    //(3) discard the low 13bits because of Wnr
    assign yp_real = {yp_real_r[39], yp_real_r[13+23:13]};
    assign yp_imag = {yp_imag_r[39], yp_imag_r[13+23:13]};
    assign yq_real = {yq_real_r[39], yq_real_r[13+23:13]};
    assign yq_imag = {yq_imag_r[39], yq_imag_r[13+23:13]};
    assign valid   = en_r[2];

endmodule

顶层例化

根据 ​FFT ​算法结构示意图,将蝶形单元例化,完成最后的 ​FFT ​功能。

可根据每一级蝶形单元的输入输出对应关系,依次手动例化 12 次,也可利用 ​generate ​进行例化,此时就需要非常熟悉 ​FFT ​中"组"和"级"的特点:

  • 8 点 FFT 设计,需要 3 级运算,每一级有 4 个蝶形单元,每一级的组数目分别是 4、2、1。
  • 每一级的组内一个蝶形单元中两个输入端口的距离恒为 (m 为级标号,对应左移运算 1<<m),组内两个蝶形单元的第一个输入端口间的距离为 1。
  • 每一级相邻组间的第一个蝶形单元的第一个输入端口的距离为 (对应左移运算 2<<m)。

例化代码如下。

其中,矩阵信号 xm_real(xm_imag)的一维、二维地址是代表级和组的标识。

在判断信号端口之间的连接关系时,使用了看似复杂的判断逻辑,而且还带有乘号,其实最终生成的电路和手动编写代码例化 12 个蝶形单元的方式是完全相同的。因为 generate 中的变量只是辅助生成实际的电路,相关值的计算判断都已经在编译时完成。这些变量更不会生成实际的电路,只是为更快速的模块例化提供了一种方法。

timescale 1ns/100ps
module fft8 (
    input                    clk,
    input                    rstn,
    input                    en,

    input signed [23:0]      x0_real,
    input signed [23:0]      x0_imag,
    input signed [23:0]      x1_real,
    input signed [23:0]      x1_imag,
    input signed [23:0]      x2_real,
    input signed [23:0]      x2_imag,
    input signed [23:0]      x3_real,
    input signed [23:0]      x3_imag,
    input signed [23:0]      x4_real,
    input signed [23:0]      x4_imag,
    input signed [23:0]      x5_real,
    input signed [23:0]      x5_imag,
    input signed [23:0]      x6_real,
    input signed [23:0]      x6_imag,
    input signed [23:0]      x7_real,
    input signed [23:0]      x7_imag,

    output                   valid,
    output signed [23:0]     y0_real,
    output signed [23:0]     y0_imag,
    output signed [23:0]     y1_real,
    output signed [23:0]     y1_imag,
    output signed [23:0]     y2_real,
    output signed [23:0]     y2_imag,
    output signed [23:0]     y3_real,
    output signed [23:0]     y3_imag,
    output signed [23:0]     y4_real,
    output signed [23:0]     y4_imag,
    output signed [23:0]     y5_real,
    output signed [23:0]     y5_imag,
    output signed [23:0]     y6_real,
    output signed [23:0]     y6_imag,
    output signed [23:0]     y7_real,
    output signed [23:0]     y7_imag
    );

    //operating data
    wire signed [23:0]             xm_real [3:0] [7:0];
    wire signed [23:0]             xm_imag [3:0] [7:0];
    wire                           en_connect [15:0] ;
    assign                         en_connect[0] = en;
    assign                         en_connect[1] = en;
    assign                         en_connect[2] = en;
    assign                         en_connect[3] = en;

    //factor, multiplied by 0x2000
    wire signed [15:0]             factor_real [3:0] ;
    wire signed [15:0]             factor_imag [3:0];
    assign factor_real[0]        = 16'h2000; //1
    assign factor_imag[0]        = 16'h0000; //0
    assign factor_real[1]        = 16'h16a0; //sqrt(2)/2
    assign factor_imag[1]        = 16'he95f; //-sqrt(2)/2
    assign factor_real[2]        = 16'h0000; //0
    assign factor_imag[2]        = 16'he000; //-1
    assign factor_real[3]        = 16'he95f; //-sqrt(2)/2
    assign factor_imag[3]        = 16'he95f; //-sqrt(2)/2

    //输入初始化,和码位有关倒置
    assign xm_real[0][0] = x0_real;
    assign xm_real[0][1] = x4_real;
    assign xm_real[0][2] = x2_real;
    assign xm_real[0][3] = x6_real;
    assign xm_real[0][4] = x1_real;
    assign xm_real[0][5] = x5_real;
    assign xm_real[0][6] = x3_real;
    assign xm_real[0][7] = x7_real;
    assign xm_imag[0][0] = x0_imag;
    assign xm_imag[0][1] = x4_imag;
    assign xm_imag[0][2] = x2_imag;
    assign xm_imag[0][3] = x6_imag;
    assign xm_imag[0][4] = x1_imag;
    assign xm_imag[0][5] = x5_imag;
    assign xm_imag[0][6] = x3_imag;
    assign xm_imag[0][7] = x7_imag;

    //butter instantiaiton
    //integer              index[11:0] ;
    genvar               m, k;
    generate
    //3 stage
    for(m=0; m<=2; m=m+1) begin: stage
        for (k=0; k<=3; k=k+1) begin: unit

            butterfly           u_butter(
               .clk        (clk                 ) ,
               .rstn       (rstn                ) ,
               .en         (en_connect[m*4 + k] ) ,
                       //是否再组内?组编号+组内编号:下组编号+新组内编号
               .xp_real    (xm_real[ m ] [k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))] ),
               .xp_imag    (xm_imag[ m ] [k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))] ),
               .xq_real    (xm_real[ m ] [(k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))) + (1<<m) ]),                 //增加蝶形单元两个输入端口间距离
               .xq_imag    (xm_imag[ m ] [(k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))) + (1<<m) ]),

               .factor_real(factor_real[k[m:0]<(1<<m)?
                            k[m:0] : k[m:0]-(1<<m) ]),
               .factor_imag(factor_imag[k[m:0]<(1<<m)?
                            k[m:0] : k[m:0]-(1<<m) ]),

               //output data
               .valid      (en_connect[ (m+1)*4 + k ]  ),
               .yp_real    (xm_real[ m+1 ][k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))] ),
               .yp_imag    (xm_imag[ m+1 ][(k[m:0]) < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))] ),
               .yq_real    (xm_real[ m+1 ][(k[m:0] < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))) + (1<<m) ]),
               .yq_imag    (xm_imag[ m+1 ][((k[m:0]) < (1<<m) ?
                           (k[3:m] << (m+1)) + k[m:0] :
                           (k[3:m] << (m+1)) + (k[m:0]-(1<<m))) + (1<<m) ])
               );
            end
        end
    endgenerate

    assign     valid = en_connect[12];
    assign     y0_real = xm_real[3][0] ;
    assign     y0_imag = xm_imag[3][0] ;
    assign     y1_real = xm_real[3][1] ;
    assign     y1_imag = xm_imag[3][1] ;
    assign     y2_real = xm_real[3][2] ;
    assign     y2_imag = xm_imag[3][2] ;
    assign     y3_real = xm_real[3][3] ;
    assign     y3_imag = xm_imag[3][3] ;
    assign     y4_real = xm_real[3][4] ;
    assign     y4_imag = xm_imag[3][4] ;
    assign     y5_real = xm_real[3][5] ;
    assign     y5_imag = xm_imag[3][5] ;
    assign     y6_real = xm_real[3][6] ;
    assign     y6_imag = xm_imag[3][6] ;
    assign     y7_real = xm_real[3][7] ;
    assign     y7_imag = xm_imag[3][7] ;

endmodule

testbench

testbench 编写如下,主要用于 16 路实、复数据的连续输入。因为每次 FFT 只有 8 点数据,所以送入的数据比较随意,并不是正弦波等规则的数据。

`timescale 1ns/100ps
module test ;
    reg          clk;
    reg          rstn;
    reg          en ;

    reg signed   [23:0]   x0_real;
    reg signed   [23:0]   x0_imag;
    reg signed   [23:0]   x1_real;
    reg signed   [23:0]   x1_imag;
    reg signed   [23:0]   x2_real;
    reg signed   [23:0]   x2_imag;
    reg signed   [23:0]   x3_real;
    reg signed   [23:0]   x3_imag;
    reg signed   [23:0]   x4_real;
    reg signed   [23:0]   x4_imag;
    reg signed   [23:0]   x5_real;
    reg signed   [23:0]   x5_imag;
    reg signed   [23:0]   x6_real;
    reg signed   [23:0]   x6_imag;
    reg signed   [23:0]   x7_real;
    reg signed   [23:0]   x7_imag;

    wire                  valid;
    wire signed  [23:0]   y0_real;
    wire signed  [23:0]   y0_imag;
    wire signed  [23:0]   y1_real;
    wire signed  [23:0]   y1_imag;
    wire signed  [23:0]   y2_real;
    wire signed  [23:0]   y2_imag;
    wire signed  [23:0]   y3_real;
    wire signed  [23:0]   y3_imag;
    wire signed  [23:0]   y4_real;
    wire signed  [23:0]   y4_imag;
    wire signed  [23:0]   y5_real;
    wire signed  [23:0]   y5_imag;
    wire signed  [23:0]   y6_real;
    wire signed  [23:0]   y6_imag;
    wire signed  [23:0]   y7_real;
    wire signed  [23:0]   y7_imag;

    initial begin
        clk = 0; //50MHz
        rstn = 0 ;
        #10 rstn = 1;
        forever begin
            #10 clk = ~clk; //50MHz
        end
    end

    fft8 u_fft (
      .clk        (clk    ),
      .rstn       (rstn    ),
      .en         (en     ),
      .x0_real    (x0_real),
      .x0_imag    (x0_imag),
      .x1_real    (x1_real),
      .x1_imag    (x1_imag),
      .x2_real    (x2_real),
      .x2_imag    (x2_imag),
      .x3_real    (x3_real),
      .x3_imag    (x3_imag),
      .x4_real    (x4_real),
      .x4_imag    (x4_imag),
      .x5_real    (x5_real),
      .x5_imag    (x5_imag),
      .x6_real    (x6_real),
      .x6_imag    (x6_imag),
      .x7_real    (x7_real),
      .x7_imag    (x7_imag),

      .valid      (valid),
      .y0_real    (y0_real),
      .y0_imag    (y0_imag),
      .y1_real    (y1_real),
      .y1_imag    (y1_imag),
      .y2_real    (y2_real),
      .y2_imag    (y2_imag),
      .y3_real    (y3_real),
      .y3_imag    (y3_imag),
      .y4_real    (y4_real),
      .y4_imag    (y4_imag),
      .y5_real    (y5_real),
      .y5_imag    (y5_imag),
      .y6_real    (y6_real),
      .y6_imag    (y6_imag),
      .y7_real    (y7_real),
      .y7_imag    (y7_imag));

    //data input
    initial      begin
        en = 0 ;
        x0_real = 24'd10;
        x1_real = 24'd20;
        x2_real = 24'd30;
        x3_real = 24'd40;
        x4_real = 24'd10;
        x5_real = 24'd20;
        x6_real = 24'd30;
        x7_real = 24'd40;

        x0_imag = 24'd0;
        x1_imag = 24'd0;
        x2_imag = 24'd0;
        x3_imag = 24'd0;
        x4_imag = 24'd0;
        x5_imag = 24'd0;
        x6_imag = 24'd0;
        x7_imag = 24'd0;
        @(negedge clk) ;
        en = 1 ;
        forever begin
            @(negedge clk) ;
            x0_real = (x0_real > 22'h3F_ffff) ? 'b0 : x0_real + 1 ;
            x1_real = (x1_real > 22'h3F_ffff) ? 'b0 : x1_real + 1 ;
            x2_real = (x2_real > 22'h3F_ffff) ? 'b0 : x2_real + 31 ;
            x3_real = (x3_real > 22'h3F_ffff) ? 'b0 : x3_real + 1 ;
            x4_real = (x4_real > 22'h3F_ffff) ? 'b0 : x4_real + 23 ;
            x5_real = (x5_real > 22'h3F_ffff) ? 'b0 : x5_real + 1 ;
            x6_real = (x6_real > 22'h3F_ffff) ? 'b0 : x6_real + 6 ;
            x7_real = (x7_real > 22'h3F_ffff) ? 'b0 : x7_real + 1 ;

            x0_imag = (x0_imag > 22'h3F_ffff) ? 'b0 : x0_imag + 2 ;
            x1_imag = (x1_imag > 22'h3F_ffff) ? 'b0 : x1_imag + 5 ;
            x2_imag = (x2_imag > 22'h3F_ffff) ? 'b0 : x2_imag + 3 ;
            x3_imag = (x3_imag > 22'h3F_ffff) ? 'b0 : x3_imag + 6 ;
            x4_imag = (x4_imag > 22'h3F_ffff) ? 'b0 : x4_imag + 4 ;
            x5_imag = (x5_imag > 22'h3F_ffff) ? 'b0 : x5_imag + 8 ;
            x6_imag = (x6_imag > 22'h3F_ffff) ? 'b0 : x6_imag + 11 ;
            x7_imag = (x7_imag > 22'h3F_ffff) ? 'b0 : x7_imag + 7 ;
        end
    end

   //finish simulation
   initial #1000       $finish ;
endmodule

仿真结果

大致可以看出,FFT 结果可以流水输出。


用 matlab 自带的 FFT 函数对相同数据进行运算,前 2 组数据 FFT 结果如下。

可以看出,第一次输入的数据信号只有实部有效时,FFT 结果是完全一样的。

但是第二次输入的数据复部也有信号,此时两者之间的结果开始有误差,有时误差还很大。


用 matlab 对 Verilog 实现的 FFT 过程进行模拟,发现此过程的 FFT 结果和 Verilog 实现的 FFT 结果基本一致。

将有误差的两种 FFT 结果取绝对值进行比较,图示如下。

可以看出,FFT 结果的趋势大致相同,但在个别点有肉眼可见的误差。


设计总结:

就如设计蝶形单元时所说,旋转因子量化时,位宽的选择就会引入误差。

而且每个蝶形单元的运算结果都会进行截取,也会引入误差。

matlab 计算 FFT 时不用考虑精度问题,以其最高精度对数据进行 FFT 计算。

以上所述,都会导致最后两种 FFT 计算方式结果的差异。

感兴趣的学者,可以将旋转因子和输入数据位宽再进行一定的增加,FFT 点数也可以增加,然后再进行仿真对比,相对误差应该会减小。

附录:matlab 使用

生成旋转因子

8 点 FFT 只需要用到 4 个旋转因子。旋转因子扩大倍数为 8192。

clear all;close all;clc;
%=======================================================
% Wnr calcuting
%=======================================================
for r = 0:3
    Wnr_factor  = cos(pi/4*r) - j*sin(pi/4*r) ;
    Wnr_integer = floor(Wnr_factor * 2^13) ;
   
    if (real(Wnr_integer)<0)
        Wnr_real    = real(Wnr_integer) + 2^16 ; %负数的补码
    else
        Wnr_real    = real(Wnr_integer) ;
    end
    if (imag(Wnr_integer)<0)
        Wnr_imag    = imag(Wnr_integer) + 2^16 ;
    else
        Wnr_imag    = imag(Wnr_integer);
    end
   
    Wnr(2*r+1,:)  =  dec2hex(Wnr_real)   %实部
    Wnr(2*r+2,:)  =  dec2hex(Wnr_imag)   %虚部
end

FFT 结果对比

matlab 模拟 Verilog 实现 FFT 的过程如下,也包括 2 种 FFT 结果的对比。

clear all;close all;clc;
%=======================================================
% 8dots fft
%=======================================================
for r=0:3
    Wnr(r+1)  = cos(pi/4*r) - j*sin(pi/4*r) ;
end
x       = [10, 20, 30, 40, 10, 20 ,30 ,40];
step    = [1+2j, 1+5j, 31+3j, 1+6j, 23+4j, 1+8j, 6+11j, 1+7j];
x2      = x + step;
xm0     = [x2(0+1), x2(4+1), x2(2+1), x2(6+1), x2(1+1), x2(5+1),         x2(3+1), x2(7+1)] ;

%% stage1
xm1(1) = xm0(1) + xm0(2)*Wnr(1) ;
xm1(2) = xm0(1) - xm0(2)*Wnr(1) ;
xm1(3) = xm0(3) + xm0(4)*Wnr(1) ;
xm1(4) = xm0(3) - xm0(4)*Wnr(1) ;
xm1(5) = xm0(5) + xm0(6)*Wnr(1) ;
xm1(6) = xm0(5) - xm0(6)*Wnr(1) ;
xm1(7) = xm0(7) + xm0(8)*Wnr(1) ;
xm1(8) = xm0(7) - xm0(8)*Wnr(1) ;
floor(xm1(:))

%% stage2
xm2(1) = xm1(1) + xm1(3)*Wnr(1) ;
xm2(3) = xm1(1) - xm1(3)*Wnr(1) ;
xm2(2) = xm1(2) + xm1(4)*Wnr(2) ;
xm2(4) = xm1(2) - xm1(4)*Wnr(2) ;
xm2(5) = xm1(5) + xm1(7)*Wnr(1) ;
xm2(7) = xm1(5) - xm1(7)*Wnr(1) ;
xm2(6) = xm1(6) + xm1(8)*Wnr(2) ;
xm2(8) = xm1(6) - xm1(8)*Wnr(2) ;
floor(xm2(:))

%% stage3
xm3(1) = xm2(1) + xm2(5)*Wnr(1) ;
xm3(5) = xm2(1) - xm2(5)*Wnr(1) ;
xm3(2) = xm2(2) + xm2(6)*Wnr(2) ;
xm3(6) = xm2(2) - xm2(6)*Wnr(2) ;
xm3(3) = xm2(3) + xm2(7)*Wnr(3) ;
xm3(7) = xm2(3) - xm2(7)*Wnr(3) ;
xm3(4) = xm2(4) + xm2(8)*Wnr(4) ;
xm3(8) = xm2(4) - xm2(8)*Wnr(4) ;
floor(xm3(:))

%% fft
fft1 = fft(x)
fft2 = fft(x2)
plot(1:8, abs(fft2))
hold on
plot(1:8, abs(xm3), 'r')

点击这里下载源码


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号